Necrotizing Enterocolitis: an Update

Josef Neu, M.D.
Neonatal Biochemistry, Nutritional and Gastrointestinal Development Laboratory
University of Florida

"Classic" NEC

Agenda

- Background
- Different forms of "NEC"
- Pathogenesis: "Classic NEC"
- Can we develop predictive and/or diagnostic biomarkers?
Necrotizing Enterocolitis: Scope of the Problem

- In US and Canada, it affects approximately 7% of babies weighing between 500-1500 grams (approximately 20-30% die).
- Approximates the number of children fewer than 15 years of age who die of leukemia or meningitis.
- Survivors may be left with significant sequelae.
- Very costly.
- Scares neonatologists!

More than 1 Disease: What’s been called “NEC”?

- Term infants
- Preterm infants with isolated intestinal perforations.
- Preterm infants—“Classic” NEC

NEC in Term Infants vs. Preterms

- In term infants: Greater association with:
 - Congenital Heart Disease.
 - “Differences in initial severity, range of age at diagnosis, and outcomes between subjects with necrotizing enterocolitis with and without cardiac disease suggest that necrotizing enterocolitis in the cardiac patient is a distinct disease process and should be labeled cardiogenic necrotizing enterocolitis” Pickard, et al Pediatrics, 2009
Right after birth 12 hours later

Isolated Non-NEC Perforations

- Occurs early.
- Not related to feedings (except for possibly the lack of feedings).
Bells is Broken

- Stage 1 - Too non-specific and the term should not be used.
- Stage 3 - Could signify intestinal necrosis or Spontaneous Intestinal Perforation

What Causes NEC?

Rat model of “NEC”.
The 'Myth' of Asphyxia and Hypoxia-Ischemia as Primary Causes of Necrotizing Enterocolitis

Commentary to Green et al.: Insulin-Like Growth Factor Attenuates Apoptosis and Macrophage Damage in Hypoxia/Reoxygenation-Induced Intestinal Injury (Biol Neonate 2006;91:91–96)

Josef Neu
Division of Neonatology, Department of Pediatrics, University of Florida, Gainesville, Fl., USA

Neu, J. Acta Paediatrica, 2005
94 (Suppl 449): 100-105

Innate Immune System Immaturities:
Extrinsic Barriers
Gastric Acid Secretion

H-2 Blocker Therapy and Higher Incidence of NEC

- NICHD Neonatal Network
- Case Control study of Bell Stage II or greater
- 11,072 infants (BW 401-1500 gm), 7.1% developed NEC.
- Antecedent H-2 blocker therapy resulted in higher incidence of NEC (P<0.001).

Gastric Acid Inhibition

Ranitidine is Associated With Infections, Necrotizing Enterocolitis, and Fatal Outcome in Newborns

Pediatrics, 2012, 129. e-40-45
NEC: Relation to Inflammatory Mediators

- Increased plasma pro-inflammatory cytokine (IL-8, IL1, IL-6, TNF-α) concentrations.
- Increased platelet activating factor.

The Gut is the Motor that Drives Systemic Inflammation and Multiple Organ Dysfunction!

Is the Immature Intestine More Prone to Inflammation than the Adult?

IL-8 secretion (A) and IL-8 mRNA induction (B) in fetal and infant organ culture preparations in response to LPS (50 µg/ml) or media alone as control

(Nanthakumar et al., PNAS, 2000).
The Tight Junction

Barrier Function: loss of Epithelial Integrity

Factors Affecting TJ Function

- Enteral nutrient deprivation (e.g., TPN).
- Stress (trauma, burns, surgery and psychological).
- Infection.
- Cytokines, vascular endothelial growth factor.
- Drugs (e.g., Indomethacin and glucocorticoids).
- Microbial Ecology
The Human Microbiome Project

Goal: identify and characterize the microorganisms which are found in association with both healthy and diseased humans (their microbial flora).

Commensal Microbes: Beneficial Effects for the Host

- Nutrient metabolism
- Tissue development
- Resistance to colonization with pathogens
- Maintenance of intestinal "homeostasis"
- Development of the Brain?
Regional Differences

Conventional vs. Germ Free Mice

“TOLL” Proteins
“Toll Receptors”

Lessons

- Low grade stimulation ("tickling") of toll receptors can prevent high grade inflammation and intestinal damage.
- What are the mechanisms?

Results
Effects of the cell components Flagellin, LTA and LPS on IL-8 production.
Microbiota Study of Babies with NEC at UF

- Preterm infants with birth weight less than 1250 grams and gestational age <32 weeks were enrolled from three University of Florida affiliated hospitals.
- Stools collected from birth, frozen and stored.
- Stools from babies who developed NEC taken for analysis.
- Control infants were selected and matched to NEC case infants using gestational age, birth weight, birth center, date of birth (+/- 2 months), and predominant enteral nutrient (breast milk vs. formula).

Table 1. Characteristics of study subjects.

<table>
<thead>
<tr>
<th>Infant</th>
<th>Gender</th>
<th>Race/Ethnicity</th>
<th>Birth Weight</th>
<th>Gestational Age</th>
<th>Enteral Nutrient</th>
<th>NEC</th>
<th>Grad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infant A</td>
<td>F</td>
<td>White</td>
<td>1500 grams</td>
<td>28 weeks</td>
<td>Breast milk</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Infant B</td>
<td>M</td>
<td>White</td>
<td>1350 grams</td>
<td>27 weeks</td>
<td>Breast milk</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Infant C</td>
<td>F</td>
<td>Black</td>
<td>1400 grams</td>
<td>30 weeks</td>
<td>Formula</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Notes: Gestational age in weeks, Birth weight at birth in g, Gender (M, female; F, male), Race/Ethnicity (White, Black, Hispanic), Enteral Nutrient (Breast milk, Formula), NEC (Yes, No), Grad (Yes, No).
Fecal Microbiota: NEC

Mai V, Young C. PLOS One, May 2011

1 week before

Within 72 hrs of diagnosis

2 weeks before

1 week before

Less than 1 week before NEC
UniFrac metric analysis: grouping of the UF Jacksonville’s samples together separately from UF-Gainesville samples.

TOP TEN LIST OF NICU MEDICATIONS

<table>
<thead>
<tr>
<th>Medication Name</th>
<th>Frequency, A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ampicillin</td>
<td>196,799</td>
</tr>
<tr>
<td>Gentamicin</td>
<td>117,180</td>
</tr>
<tr>
<td>Fentanyl Sulfate</td>
<td>90,152</td>
</tr>
<tr>
<td>Intravenous (methylprednisolone)</td>
<td>64,129</td>
</tr>
<tr>
<td>Cilostazol</td>
<td>55,465</td>
</tr>
<tr>
<td>Caffeine citrate</td>
<td>48,874</td>
</tr>
<tr>
<td>Furosemide</td>
<td>47,376</td>
</tr>
<tr>
<td>Vancomycin</td>
<td>44,218</td>
</tr>
<tr>
<td>Benadel (Cephalixin)</td>
<td>36,410</td>
</tr>
<tr>
<td>Moraabatamide</td>
<td>27,541</td>
</tr>
</tbody>
</table>
Neonatal Antibiotic Treatment and Gastrointestinal Tract Development?

• 100 mg/kg/d Clamoxyl compared with saline control.
• All bacteria were significantly reduced especially Lactobacillus, mainly in colon.
• Affymetrix gene microarrays performed.
• 10-30% of the genes undergoing maturational changes showed modulation by the antibiotic so that their normal pattern of maturation was either accelerated or slowed down.
• MHC genes markedly affected—required for tolerization to luminal antigens.

Odds ratio of NEC with increased days on antibiotics

“Classic” NEC: Diagnostic Biomarkers

Why are new biomarkers needed for NEC?

• Current diagnosis based on history, physical exam, radiographic criteria detects the disease after it’s occurrence when it may already be too late.
• Diagnostic biomarkers would enhance our diagnostic capabilities.
• Predictive biomarkers would tell us which infants are at highest risk so that we could provide targeted prevention.
CRP, WBC and PLATELETS

Thuijls, et al. Annals of Surgery, 251 (6), June 2010

- PLATELETS
- C-REACTIVE PROTEIN
- WHITE BLOOD CELL

Claudin

Thuijls, et al. Annals of Surgery, 251 (6), June 2010

- Released by intestinal neutrophils with intestinal inflammatory damage and can be used as a marker for gut wall inflammation.
- It is resistant to enzymatic degradation, and can be easily measured in feces.

Calprotectin

Thuijls, et al. Annals of Surgery, 251 (6), June 2010

- Released by intestinal neutrophils with intestinal inflammatory damage and can be used as a marker for gut wall inflammation.
- It is resistant to enzymatic degradation, and can be easily measured in feces.
INTESTINAL FATTY ACID BINDING PROTEIN (I-FABP)
Thuijls, et al. Annals of Surgery, 251 (6), June 2010

- Small, water-soluble protein limited to mature enterocytes of small and large intestine.
- Released into circulation when cell membrane integrity is compromised.
- Can be measured in urine.

<table>
<thead>
<tr>
<th>Marker</th>
<th>Cutoff Value</th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>LR+</th>
<th>LR-</th>
<th>AUC (95%CI)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>I-FABP</td>
<td>2.25 pg/mmol creatinine</td>
<td>0.93</td>
<td>0.90</td>
<td>9.3</td>
<td>0.08</td>
<td>0.98 (0.94-1.0)</td>
<td><0.001</td>
</tr>
<tr>
<td>Claudin-3</td>
<td>800.8 INT</td>
<td>0.71</td>
<td>0.81</td>
<td>3.74</td>
<td>0.36</td>
<td>0.76 (0.59-0.94)</td>
<td>0.016</td>
</tr>
<tr>
<td>Calprotectin</td>
<td>286.2 microgram/gram feces</td>
<td>0.86</td>
<td>0.93</td>
<td>12.29</td>
<td>0.15</td>
<td>0.94 (0.85-1.0)</td>
<td>0.001</td>
</tr>
</tbody>
</table>

NEC versus Non NEC Differentiation
Thuijls, et al. Annals of Surgery, 251 (6), June 2010

ApoSS for Sepsis/NEC
Ng, PC et al., J Clin Invest. 2010 August 2; 120(8): 2989–3000

Figure 4
A large strategy for classifying cases suspected for late-onset sepsis/NEC on the basis of ApoSS scores on day 6 and day 1.
Inter-Alpha Inhibitor Protein

PREDICTIVE BIOMARKERS: Who is at greatest risk?

Buccal swab or Salivary analyses: Predictive Biomarkers
Salivary Secretor Phenotypes

<table>
<thead>
<tr>
<th>Secretor phenotypes</th>
<th>Control</th>
<th>Case</th>
<th>Odds Ratio (95% CI)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>11</td>
<td>9</td>
<td>1</td>
<td>1.00</td>
</tr>
<tr>
<td>Normal</td>
<td>14</td>
<td>10</td>
<td>3.4 (2.1-5.6)</td>
<td><0.001</td>
</tr>
<tr>
<td>High</td>
<td>23</td>
<td>15</td>
<td>3.4 (2.1-5.6)</td>
<td><0.001</td>
</tr>
<tr>
<td>Does not secret</td>
<td>20</td>
<td>14</td>
<td>1.00 (0.6-1.7)</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Source: Information was not determined in 2 people having a each allele single, including 2 cases and 20 controls. The P value determination will be based on the data for the remaining cases and controls.

Biomarker Discovery and Validation

Protein Spot Identification
<table>
<thead>
<tr>
<th>No.</th>
<th>Protein Name</th>
<th>Fold</th>
<th>p-value</th>
<th>mass (kDa/pI)</th>
<th>IPI number</th>
<th>score</th>
<th>coverage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Interleukin-1 receptor antagonist (IL-1RA)</td>
<td>-3.15</td>
<td>0.029</td>
<td>16.23/5.01</td>
<td>IPI00174541</td>
<td>256</td>
<td>28</td>
</tr>
<tr>
<td>2</td>
<td>Peroxiredoxin-1</td>
<td>-2.19</td>
<td>0.01</td>
<td>18.09/5.05</td>
<td>IPI00000874</td>
<td>274</td>
<td>39</td>
</tr>
<tr>
<td>3</td>
<td>Isoform 1 of Alpha-1-antitrypsin</td>
<td>3.18</td>
<td>0.045</td>
<td>72.77/5.53</td>
<td>IPI00553177</td>
<td>117</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>Clusterin isoform (apolipoprotein J)</td>
<td>-2.16</td>
<td>0.0087</td>
<td>65.50/7.62</td>
<td>IPI00291262</td>
<td>140</td>
<td>8.91</td>
</tr>
<tr>
<td>5</td>
<td>Proteosome subunit alpha type 2</td>
<td>1.18</td>
<td>0.047</td>
<td>26.04/5.05</td>
<td>IPI00219622</td>
<td>85</td>
<td>13.2</td>
</tr>
<tr>
<td>6</td>
<td>Gelsolin (isoform 2-cytoplasmic)</td>
<td>1.78</td>
<td>0.019</td>
<td>81.26/5.61</td>
<td>IPI00646773</td>
<td>698</td>
<td>22</td>
</tr>
<tr>
<td>7</td>
<td>Cleaved Peroxisomal multifunctional enzyme type 2</td>
<td>-3.61</td>
<td>0.0016</td>
<td>38.60/8.78</td>
<td>IPI00019912</td>
<td>298</td>
<td>9.92</td>
</tr>
<tr>
<td>8</td>
<td>Phosphatidylethanolamine-binding protein 1</td>
<td>4.18</td>
<td>0.004</td>
<td>23.53/8.59</td>
<td>IPI00219446</td>
<td>243</td>
<td>26</td>
</tr>
<tr>
<td>9</td>
<td>Alpha-2-glycoprotein 1, zinc precursor</td>
<td>-2.24</td>
<td>0.0062</td>
<td>38.70/5.41</td>
<td>IPI00166729</td>
<td>112</td>
<td>26</td>
</tr>
<tr>
<td>10</td>
<td>Polymeric immunoglobulin receptor</td>
<td>2.08</td>
<td>0.0026</td>
<td>86.63/5.24</td>
<td>IPI00004573</td>
<td>238</td>
<td>7.3</td>
</tr>
<tr>
<td>11</td>
<td>(3R)-hydroxyacyl-Co A dehydrogenase)</td>
<td></td>
<td></td>
<td></td>
<td>IPI00004798</td>
<td>297</td>
<td>12</td>
</tr>
<tr>
<td>12</td>
<td>Phosphatidylethanolamine-binding protein 1</td>
<td>4.18</td>
<td>0.004</td>
<td>23.53/8.59</td>
<td>IPI00219446</td>
<td>243</td>
<td>26</td>
</tr>
<tr>
<td>13</td>
<td>Alpha-2-glycoprotein 1, zinc precursor</td>
<td>-2.24</td>
<td>0.0062</td>
<td>38.70/5.41</td>
<td>IPI00166729</td>
<td>112</td>
<td>26</td>
</tr>
<tr>
<td>14</td>
<td>Polymeric immunoglobulin receptor</td>
<td>2.08</td>
<td>0.0026</td>
<td>86.63/5.24</td>
<td>IPI00004573</td>
<td>238</td>
<td>7.3</td>
</tr>
<tr>
<td>15</td>
<td>(3R)-hydroxyacyl-Co A dehydrogenase)</td>
<td></td>
<td></td>
<td></td>
<td>IPI00004798</td>
<td>297</td>
<td>12</td>
</tr>
<tr>
<td>16</td>
<td>Phosphatidylethanolamine-binding protein 1</td>
<td>4.18</td>
<td>0.004</td>
<td>23.53/8.59</td>
<td>IPI00219446</td>
<td>243</td>
<td>26</td>
</tr>
<tr>
<td>17</td>
<td>Alpha-2-glycoprotein 1, zinc precursor</td>
<td>-2.24</td>
<td>0.0062</td>
<td>38.70/5.41</td>
<td>IPI00166729</td>
<td>112</td>
<td>26</td>
</tr>
<tr>
<td>18</td>
<td>Polymeric immunoglobulin receptor</td>
<td>2.08</td>
<td>0.0026</td>
<td>86.63/5.24</td>
<td>IPI00004573</td>
<td>238</td>
<td>7.3</td>
</tr>
<tr>
<td>19</td>
<td>(3R)-hydroxyacyl-Co A dehydrogenase)</td>
<td></td>
<td></td>
<td></td>
<td>IPI00004798</td>
<td>297</td>
<td>12</td>
</tr>
</tbody>
</table>

Pathway Analysis

![Pathway Diagram](image)

Buccal IL-1 RA: First Week

![Graph](image)
Take Home Messages

• “NEC” is more than one disease.
• Pathogenesis of “classic NEC” is multifactorial, but some factors (e.g., GI microbial ecology) may be more important than others.
• Predictive and diagnostic biomarkers are needed for targeted prevention and therapy.